Евклид краткая биография и его открытия

ссылки

  1. Бисон М. Брауэр и Евклид. Indagationes Mathematicae. 2017; 51: 1-51.
  2. Корнелиус М. Евклид должен идти ? Математика в школе. 1973; 2(2): 16-17.
  3. Флетчер В. К. Евклид. Математическая газета 1938: 22(248): 58-65.
  4. Флориан С. Евклид Александрийский и бюст Евклида Мегарского. Наука, Новая серия. 1921; 53(1374): 414-415.
  5. Эрнандес Й. Более двадцати веков геометрии. Журнал Книги. 1997; 10(10): 28-29.
  6. Медер А. Е. Что не так с Евклидом?? Учитель математики. 1958; 24(1): 77-83.
  7. Тейсен Б. Ю. Евклид, Относительность и парусный спорт. История Mathematica. 1984; 11: 81-85.
  8. Валле Б. Полный анализ бинарного евклидова алгоритма. Международный симпозиум по алгоритмической теории чисел. 1998; 77-99.

дальнейшее чтение

  • ДеЛейси, Эстель Аллен (1963). Евклид и геометрия . Нью-Йорк: Франклин Уоттс.
  • Кнорр, Уилбур Ричард (1975). Эволюция евклидовых элементов: исследование теории несоизмеримых величин и ее значение для раннегреческой геометрии . Дордрехт, Голландия: Д. Рейдел. ISBN 978-90-277-0509-9.
  • Мюллер, Ян (1981). Философия математики и дедуктивная структура в элементах Евклида . Кембридж, Массачусетс: MIT Press. ISBN 978-0-262-13163-6.
  • Рид, Констанс (1963). Долгий путь от Евклида . Нью-Йорк: Кроуэлл.
  • Сабо, Арпад (1978). Начало греческой математики . AM Ungar, пер. Дордрехт, Голландия: Д. Рейдел. ISBN 978-90-277-0819-9.

Главный труд Евклида

Главным трудом ученого является письменный памятник «Начала». Это книга, написанная примерно в 300 году до нашей эры и посвященная систематическому виду построений в геометрии.

Это вершина античной геометрии с античной математикой, в целом, которая позволила сделать дальнейшие исследования и открытия в области математики. Сборник «Начала» стоит по значимости на одном уровне с трудом Автолика.

Интересно, что труды ученого известны лишь по упоминаниям. Трактат «Начала» сильно повлиял на математическое развитие. Книгу перевели на сотни мировых языков и до сих пор используют при обучении. По своей значимости в момент издания она стояла на одном уровне с Библией.

Философия

В древние времена философия была тесно сплетена со многими другими отраслями научных знаний. Так, геометрия, астрономия, арифметика и музыка считались математическими науками, понимание которых необходимо для качественного изучения философии. Евклид развивал учение Платона о четырех элементах, которым приводятся в соответствие четыре правильных многогранника:

  • стихию огня олицетворяет тетраэдр;
  • воздушной стихии соответствует октаэдр;
  • стихия земли ассоциируется с кубом;
  • водная стихия связывается с икосаэдром.

Философ Евклид

В этом контексте «Начала» можно рассматривать как своеобразное учение о построении «платоновых тел», то есть пяти правильных многогранников. Учение содержит все необходимые предпосылки, доказательства и связки. Доказательство возможности построения таких тел завершается утверждением того факта, что никаких других правильных тел, за исключением данных пяти, не существует.

Практически каждая теорема Евклида в «Началах» соответствует также показателям учения о доказательстве Аристотеля. Так, автор последовательно выводит следствия из причин, формируя цепочку логических доказательств. При этом он доказывает даже утверждения общего характера, что также соответствует учению Аристотеля.

Детство и ранние годы

Евклид родился около 330 г. до н.э., предположительно, в г. Александрия. Некоторые арабские авторы полагают, что он происходил из богатой семьи из Нократа. Есть версия, что Евклид мог родиться в Тире, а всю свою дальнейшую жизнь провести в Дамаске. Согласно некоторым документам, Евклид учился в древней школе Платона в Афинах, что было под силу только состоятельным людям. Уже после этого он переедет в г. Александрия в Египте, где и положит начало разделу математики, ныне известному как «геометрия».

Жизнь Евклида Александрийского часто путают с жизнью Евклида из Мегуро, что делает сложным обнаружение любых надёжных источников жизнеописания математика

Достоверно известно только то, что именно он привлёк внимание общественности к математике и вывел эту науку на совершенно новый уровень, совершив революционные открытия в этой области и доказав множество теорем. В те времена Александрия была не только крупнейшим городом в западной части мира, но и центром крупной, процветающей отрасли производства папируса

Именно в этом городе Евклид разработал, записал и представил миру свои труды по математике и геометрии.

Критика

Список аксиом Евклида в « Элементах» не был исчерпывающим, но представлял собой наиболее важные принципы. В его доказательствах часто используются аксиоматические понятия, которые изначально не были представлены в его списке аксиом. Более поздние редакторы вставили неявные аксиоматические предположения Евклида в список формальных аксиом.

Например, в первой конструкции Книги 1 Евклид использовал предпосылку, которая не была ни постулирована, ни доказана: две окружности с центрами на расстоянии их радиуса будут пересекаться в двух точках. Позже, в четвертой конструкции, он использовал суперпозицию (перемещение треугольников друг над другом), чтобы доказать, что если две стороны и их углы равны, то они конгруэнтны ; во время этих размышлений он использует некоторые свойства суперпозиции, но эти свойства не описаны явно в трактате. Если суперпозицию следует рассматривать как действенный метод геометрического доказательства, вся геометрия будет полна таких доказательств. Например, предложения I.1 — I.3 можно тривиально доказать с помощью суперпозиции.

Математик и историк У. В. Роуз Болл рассмотрела критику в перспективе, отметив, что «тот факт, что в течение двух тысяч лет [ Элементы ] были обычным учебником по этому предмету, порождает сильное предположение, что оно не является непригодным для этой цели».

Причины значимости

Эта работа Евклида имела большое значение по разным причинам. В первую очередь, качество отраженных в нем знаний привело к тому, что текст использовался для обучения математике и геометрии на уровне базового образования.

Как упоминалось выше, эта книга продолжала использоваться в академических кругах до 18 века; Другими словами, он действовал примерно 2000 лет.

Игра Элементы Это был первый текст, с помощью которого можно было войти в область геометрии; Благодаря этому тексту впервые можно было провести глубокие рассуждения, основанные на методах и теоремах.

Во-вторых, способ, которым Евклид организовал информацию в своей работе, также был очень ценным и трансцендентным. Структура состояла из заявления, которое было достигнуто как следствие существования нескольких принципов, ранее принятых. Эта модель также была принята в области этики и медицины.

Аксиомы

Евклид говорил, что аксиомы – это утверждения, не требующие доказательств, но при этом он понимал, что слепое принятие на веру этих утверждений не может использоваться в построении математических теорий и формул. Он осознавал, что даже аксиомы должны быть подкреплены неоспоримыми доказательствами. А потому учёный начал приводить логические заключения, подтверждавшие его геометрические аксиомы и теоремы. Для лучшего понимания этих аксиом, он разделил их на две группы, которые назвал «постулатами». Первая группа известна как «общие понятия», состоящие из признанных научных утверждений. Вторая группа постулатов является синонимом самой геометрии. Первая группа включает такие понятия, как «целое больше суммы частей» и «если две величины порознь равны одной и той же третьей, то они равны между собой». Вот лишь два из пяти постулатов, записанных Евклидом. Пять постулатов второй группы относятся непосредственно к геометрии, утверждая, что «все прямые углы равны между собой», и что «от всякой точки до всякой точки можно провести прямую».

Научная деятельность математика Евклида процветала, и в начале 1570-х г.г. его «Начала» были переведены с греческого языка на арабский, а затем и на английский язык Джоном Ди. С момента своего написания, «Начала» были перепечатаны 1 000 раз и, в конце концов, заняли почётное место в учебных классах XX столетия. Известно множество случаев, когда математики пытались оспорить и опровергнуть геометрические и математические теории Евклида, но все попытки неизменно оканчивались провалом. Итальянский математик Джироламо Саккери стремился усовершенствовать труды Евклида, но оставил свои попытки, не в силах отыскать в них ни малейшего изъяна. И лишь спустя столетие новая группа математиков сможет представить новаторские теории в области геометрии.

Литература

Фрагмент из русского перевода «Начал Евлкида» Бирна.

Библиография

Max Steck. Bibliographia Euclideana. Die Geisteslinien der Tradition in den Editionen der «Elemente» des Euklid (um 365—300). Handschriften, Inkunabeln, Frühdrucke (16.Jahrhundert). Textkritische Editionen des 17.-20. Jahrhunderts. Editionen der Opera minora (16.-20.Jahrhundert). Nachdruck, herausgeg. von Menso Folkerts. Hildesheim: Gerstenberg, 1981.

Античные Начал

  • Прокл Диадох. к первой книге «Начал» Евклида. Введение. Пер. и комм. Ю. А. Шичалина. М.: ГЛК, 1994.
  • Прокл Диадох. Комментарий к первой книге «Начал» Евклида / Перевод А. И. Щетникова. — М.: Русский фонд содействия образованию и науке, 2013.
  • Thompson W. Pappus’ commentary on Euclid’s Elements. Cambridge, 1930.

Исследования

О Началах Евклида

  • Алимов Н. Г. Величина и отношение у Евклида. Историко-математические исследования, вып. 8, 1955, с. 573—619.
  • Башмакова И. Г. Арифметические книги «Начал» Евклида. Историко-математические исследования, вып. 1, 1948, с. 296—328.
  • Ван дер Варден Б. Л. Пробуждающаяся наука. М.: Физматгиз, 1959.
  • Выгодский М. Я. «Начала» Евклида. Историко-математические исследования, вып. 1, 1948, с. 217—295.
  • Глебкин В. В. Наука в контексте культуры: («Начала» Евклида и «Цзю чжан суань шу»). М.: Интерпракс, 1994. 188 стр. 3000 экз. ISBN 5-85235-097-4
  • Каган В. Ф. Евклид, его продолжатели и комментаторы. В кн.: Каган В. Ф. Основания геометрии. Ч. 1. М., 1949, с. 28-110.
  • Раик А. Е. Десятая книга «Начал» Евклида. Историко-математические исследования, вып. 1, 1948, с. 343—384.
  • Родин А. В. Математика Евклида в свете философии Платона и Аристотеля. М.: Наука, 2003.
  • Цейтен Г. Г. История математики в древности и в средние века. М.-Л.: ОНТИ, 1938.
  • Щетников А. И. Вторая книга «Начал» Евклида: её математическое содержание и структура. Историко-математические исследования, вып. 12(47), 2007, с. 166—187.
  • Щетников А. И. Сочинения Платона и Аристотеля как свидетельства о становлении системы математических определений и аксиом. ΣΧΟΛΗ, вып. 1, 2007, c. 172—194.
  • Artmann B. Euclid’s «Elements» and its prehistory. Apeiron, v. 24, 1991, p. 1-47.
  • Brooker M.I.H., Connors J. R., Slee A. V. Euclid. CD-ROM. Melbourne, CSIRO-Publ., 1997.
  • Burton H.E. The optics of Euclid. J. Opt. Soc. Amer., v. 35, 1945, p. 357—372.
  • Itard J. Lex livres arithmetiqués d’Euclide. P.: Hermann, 1961.
  • Fowler D.H. An invitation to read Book X of Euclid’s Elements. Historia Mathematica, v. 19, 1992, p. 233—265.
  • Knorr W.R. The evolution of the Euclidean Elements. Dordrecht: Reidel, 1975.
  • Mueller I. Philosophy of mathematics and deductive structure in Euclid’s Elements. Cambridge (Mass.), MIT Press, 1981.
  • Schreiber P. Euklid. Leipzig: Teubner, 1987.
  • Seidenberg A. Did Euclid’s Elements, Book I, develop geometry axiomatically? Archive for History of Exact Sciences, v. 14, 1975, p. 263—295.
  • Staal J.F. Euclid and Panini // Philosophy East and West.1965.№ 15. P. 99-115.
  • Taisbak C.M. Division and logos. A theory of equivalent couples and sets of integers, propounded by Euclid in the arithmetical books of the Elements. Odense UP, 1982.
  • Taisbak C.M. Colored quadrangles. A guide to the tenth book of Euclid’s Elements. Copenhagen, Museum Tusculanum Press, 1982.
  • Tannery P. La géometrié grecque. Paris: Gauthier-Villars, 1887.

О других сочинениях Евклида

  • Зверкина Г. А. Обзор трактата Евклида «Данные». Математика и практика, математика и культура. М., 2000, с. 174—192.
  • Ильина Е. А. О «Данных» Евклида. Историко-математические исследования, вып. 7(42), 2002, с. 201—208.
  • Шаль М. О поризмах Евклида. // Исторический обзор происхождения и развития геометрических методов. М., 1883.
  • Berggren J.L., Thomas R.S.D. Euclid’s Phaenomena: a translation and study of a Hellenistic treatise in spherical astronomy. NY, Garland, 1996.
  • Schmidt R. Euclid’s Recipients, commonly called the Data. Golden Hind Press, 1988.
  • С. Кутателадзе Апология Евклида

«Начала» Евклида

Ватиканский манускрипт, т.1, 38v — 39r. Euclid I prop. 47 (теорема Пифагора)

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

Евклид открывает врата Сада Математики. Иллюстрация из трактата Никколо Тартальи «Новая наука»

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII—IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строятся чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н. э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.).

Начала предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. Комментарии к Началам в античности составляли Герон, Порфирий, Папп, Прокл, Симпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу.

В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.

Личная жизнь

До нас дошла лишь некоторая информация о работе Евклида в науке, о его личной жизни же неизвестно практически ничего. Существует легенда, что царь Птолемей, решивший изучить геометрию, был раздосадован ее сложностью. Тогда он обратился к Евклиду и попросил его указать на более легкий путь к знаниям, на что мыслитель ответил: «К геометрии нет царской дороги». Выражение впоследствии стало крылатым.

Евклид основал математическую школу при Александрийской библиотеке

Есть доказательства того, что при Александрийской библиотеке этот древнегреческий ученый основал частную математическую школу. В ней учились такие же энтузиасты науки, как и сам Евклид. Даже на закате своей жизни Евклид помогал ученикам в написании работ, создании собственных теорий и разработке соответствующих доказательств.

Точных данных о внешности ученого нет. Его портреты и скульптуры – это плод воображения их создателей, придуманный образ, передававшийся из поколения в поколение.

биография

Сохранилось очень мало оригинальных упоминаний Евклида, поэтому о его жизни известно очень мало. Вероятно, он родился c. 325 г. до н.э., хотя место и обстоятельства его рождения и смерти неизвестны и могут быть оценены лишь приблизительно относительно других людей, упомянутых вместе с ним. Он упоминается по имени, хотя и редко, другими греческими математиками, начиная с Архимеда (ок. 287 г. до н.э. — ок. 212 г. до н.э.) и далее, и обычно упоминается как «ὁ στοιχειώτης» («автор Элементов »). Несколько исторических ссылок на Евклида были написаны Проклом ок. 450 г. н.э., через восемь веков после жизни Евклида.

Подробную биографию Евклида приводят арабские авторы, в которых упоминается, например, родной город Тир . Считается, что эта биография вымышленная. Если он пришел из Александрии, он бы познали Серапеум из Александрии , и Александрийская библиотека , и , возможно, работал там в свое время. Евклид прибыл в Александрию примерно через десять лет после ее основания Александром Великим , что означает, что он прибыл ок. 322 г. до н. Э.

Прокл лишь кратко представляет Евклида в своем комментарии к элементам . Согласно Проклу, Евклид предположительно принадлежал к «убеждению» Платона и объединил элементы , опираясь на предыдущие работы Евдокса Книдского и нескольких учеников Платона (в частности, Теэтета и Филиппа из Опуса ). Прокл считает, что Евклид не так уж и велик. моложе этих, и что он, должно быть, жил во времена Птолемея I.(ок. 367 г. до н.э. — 282 г. до н.э.), потому что он был упомянут Архимедом. Хотя очевидное цитирование Евклида Архимедом было сочтено интерполяцией более поздних редакторов его работ, все еще считается, что Евклид написал свои произведения до того, как Архимед написал свои. Прокл позже пересказывает историю о том, что, когда Птолемей I спросил, есть ли более короткий путь к изучению геометрии, чем « Элементы Евклида» , «Евклид ответил, что к геометрии нет королевской дороги». Этот анекдот вызывает сомнения, поскольку он похож на историю, рассказанную о Менахме и Александре Великом.

Euclidis quae supersunt omnia (1704 г.)

Евклид умер c. 270 г. до н.э., предположительно в Александрии. В единственной другой ключевой ссылке на Евклида Папп Александрийский (ок. 320 г. н.э.) кратко упомянул, что Аполлоний «провел очень долгое время с учениками Евклида в Александрии, и именно так он приобрел такую ​​научную привычку. мысли «c. 247–222 гг. До н. Э.

Поскольку отсутствие биографической информации является необычным для того периода (обширные биографии доступны для наиболее значительных греческих математиков за несколько веков до и после Евклида), некоторые исследователи предположили, что Евклид не был историческим персонажем, и что его работы были написаны командой математиков, которые взяли имя Евклид от Евклида из Мегары (а-ля Бурбаки ). Однако эта гипотеза не очень хорошо принимается учеными, и в ее пользу мало свидетельств.

Элементы

Один из старейших сохранившихся фрагментов Элементов Евклида , найденный в Оксиринхе и датированный примерно 100 годом нашей эры ( P. Oxy. 29 ). Диаграмма прилагается к книге II, предложение 5.

Хотя многие результаты в Elements были созданы более ранними математиками, одним из достижений Евклида было представление их в единой, логически связной структуре, упрощающей использование и легкость ссылок, включая систему строгих математических доказательств, которая остается основой математика 23 века спустя.

В самых ранних сохранившихся копиях Элементов нет упоминания об Евклиде . В большинстве копий говорится, что они «из издания Теона » или «лекций Теона», в то время как в тексте, который считается основным и хранится в Ватикане, автор не упоминается. Прокл дает единственную ссылку, приписывающую элементы Евклиду.

Хотя « Элементы» наиболее известны своими геометрическими результатами, они также включают теорию чисел . В нем рассматривается связь между совершенными числами и простыми числами Мерсенна (известная как теорема Евклида – Эйлера ), бесконечность простых чисел , лемма Евклида о факторизации (которая приводит к основной арифметической теореме о единственности простых факторизаций ) и алгоритм Евклида. для нахождения наибольшего общего делителя двух чисел.

Геометрическая система, описанная в Элементах, долгое время была известна просто как геометрия и считалась единственно возможной геометрией. Однако сегодня эту систему часто называют евклидовой геометрией, чтобы отличить ее от других так называемых неевклидовых геометрий, открытых в XIX веке.

Фрагменты

Папирус Oxyrhynchus 29 (P. Oxy. 29) представляет собой фрагмент второй книги Элементов Евклида, раскопанные Grenfell и Hunt 1897 года в Oxyrhynchus . Более поздние исследования предполагают дату 75–125 гг. Нашей эры.

Фрагмент содержит утверждение 5-го предложения Книги 2, которое в переводе TL Heath гласит:

Литература

Euclides, 1703

Фрагмент из русского перевода «Начал Евлкида» Бирна.

Биография

  • Храмов, Ю. А. Евклид // Физики : Биографический справочник / Под ред. А. И. Ахиезера. — Изд. 2-е, испр. и доп. — М. : Наука, 1983. — С. 109. — 400 с. — 200 000 экз.

Библиография

Max Steck. Bibliographia Euclideana. Die Geisteslinien der Tradition in den Editionen der «Elemente» des Euklid (um 365—300). Handschriften, Inkunabeln, Frühdrucke (16.Jahrhundert). Textkritische Editionen des 17.-20. Jahrhunderts. Editionen der Opera minora (16.-20.Jahrhundert). Nachdruck, herausgeg. von Menso Folkerts. Hildesheim: Gerstenberg, 1981.

Античные комментарии Начал

  • Прокл Диадох. Комментарий к первой книге «Начал» Евклида / Перевод А. И. Щетникова. — М.: Русский фонд содействия образованию и науке, 2013.
  • Thompson W. Pappus’ commentary on Euclid’s Elements. Cambridge, 1930.

Исследования

О Началах Евклида
  • Алимов Н. Г. Величина и отношение у Евклида // Историко-математические исследования. Вып. 8. — 1955. — С. 573—619.
  • Башмакова И. Г. Арифметические книги «Начал» Евклида // Историко-математические исследования. Вып. 1. — 1948. — С. 296—328.
  • Ван дер Варден Б. Л. Пробуждающаяся наука. — М.: Физматгиз, 1959.
  • Выгодский М. Я. «Начала» Евклида // Историко-математические исследования. Вып. 1. — 1948. С. 217—295.
  • Глебкин В. В. Наука в контексте культуры: («Начала» Евклида и «Цзю чжан суань шу»). — М.: Интерпракс, 1994. — 188 с. — 3000 экз. — ISBN 5-85235-097-4
  • Евклид, его продолжатели и комментаторы // Каган В. Ф. Основания геометрии. Ч. 1. — М., 1949. — С. 28-110.
  • Раик А. Е. Десятая книга «Начал» Евклида // Историко-математические исследования. Вып. 1. — 1948. — С. 343—384.
  • Родин А. В. Математика Евклида в свете философии Платона и Аристотеля. — М.: Наука, 2003.
  • Цейтен Г. Г. История математики в древности и в средние века. — М.-Л.: ОНТИ, 1938.
  • Щетников А. И. Вторая книга «Начал» Евклида: её математическое содержание и структура // Историко-математические исследования. Вып. 12 (47). — 2007. — С. 166—187.
  • Щетников А. И. Сочинения Платона и Аристотеля как свидетельства о становлении системы математических определений и аксиом. ΣΧΟΛΗ. Вып. 1. — 2007. — С. 172—194.
  • Artmann B. Euclid’s «Elements» and its prehistory. Apeiron, v. 24, 1991, p. 1-47.
  • Brooker M.I.H., Connors J. R., Slee A. V. Euclid. CD-ROM. Melbourne, CSIRO-Publ., 1997.
  • Burton H.E. The optics of Euclid. J. Opt. Soc. Amer., v. 35, 1945, p. 357—372.
  • Itard J. Lex livres arithmetiqués d’Euclide. P.: Hermann, 1961.
  • Fowler D.H. An invitation to read Book X of Euclid’s Elements. Historia Mathematica, v. 19, 1992, p. 233—265.
  • Knorr W.R. The evolution of the Euclidean Elements. Dordrecht: Reidel, 1975.
  • Mueller I. Philosophy of mathematics and deductive structure in Euclid’s Elements. Cambridge (Mass.), MIT Press, 1981.
  • Schreiber P. Euklid. Leipzig: Teubner, 1987.
  • Seidenberg A. Did Euclid’s Elements, Book I, develop geometry axiomatically? Archive for History of Exact Sciences, v. 14, 1975, p. 263—295.
  • Staal J.F. Euclid and Panini // Philosophy East and West.1965.№ 15. P. 99-115.
  • Taisbak C.M. Division and logos. A theory of equivalent couples and sets of integers, propounded by Euclid in the arithmetical books of the Elements. Odense UP, 1982.
  • Taisbak C.M. Colored quadrangles. A guide to the tenth book of Euclid’s Elements. Copenhagen, Museum Tusculanum Press, 1982.
  • Tannery P. La géometrié grecque. Paris: Gauthier-Villars, 1887.
О других сочинениях Евклида
  • Зверкина Г. А. Обзор трактата Евклида «Данные» // Математика и практика, математика и культура. — М., 2000. — С. 174—192.
  • Ильина Е. А. О «Данных» Евклида // Историко-математические исследования. Вып. 7 (42). — 2002. — С. 201—208.
  • Шаль М. О поризмах Евклида // Исторический обзор происхождения и развития геометрических методов. — М., 1883.
  • Berggren J.L., Thomas R.S.D. Euclid’s Phaenomena: a translation and study of a Hellenistic treatise in spherical astronomy. NY, Garland, 1996.
  • Schmidt R. Euclid’s Recipients, commonly called the Data. Golden Hind Press, 1988.